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motlo:

Ainsi cette science qui devait tout m'apprendre finit dans l'hypothöse, cette lucidit6 sombre dans lam6taphore' cette incertitude se r6sout en ceuvre d'art. Qu'avais-je besoin de tant d,efforts? Les lignesdouces de ces collines et la main-_de soir sur ce cceur agit6 m'en apprennent bien plus.
Arberr camus, un raisonnement absurde (Le mythe de sisyphe)
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Abstract
In this article I point at a broad analogy between observed behaviour of neuronal firingpatterns and structures appearing i.r ro*pirx .roroli.ui ,y1tems, notabiy temperate pristineforests' Although such a too.r".tioo r.."rT 

1t first rimote, I will argue ti.trh; ;"saic-cycle(patch dynamics) concept seems particularly apt ui ä..Jriuog universal features corrunonto a wide variety of selforganizing iierarchical siructures. A simple approach where neuronsare represented by connected probabilistic T\rring *u.hio., will be introduced and relatedto the mosaic-cycle picture. Ai a more geleral levil, I win try to sum up some of the genericproperties an information processing machine tlt e tn" uruio must posses, including error cor-recting coding, optimal control, anä universai r"*;o;;ility. Finally, simple mathematical

;:::ä:JJ.' 
are given to explain whv perception ani learnins **rü ;;-;;-t';, äiaiosu. rike

1 Modeling: Difficulties and perspectives
since the last paper I wrote for the same Editor (Rujan, lggg) many of us, theoretical physicists,have lost our (neuro)biological iono."o.", and perhap, ,o*. of our weil intentioned optimism aswell' As the Decade of the Brainunfolds, it is not hard to see that in one respect we succeeded:the neurobiological community became F.nt, 1*ur; of irr. g*., potential of numerical simula-
iffi: ,fi*$.:',ä llJ:liliäivorkstations 

to hiring üoä.i.,, there is ooly u ,*u11 budgerary

,""I*t;xx,T?:1,;ää::*,ä,Todels 
and simurations? rhe few rines below mighr spare

1' You can moder onry something you understand in some detail.
2' A model does not solve problems: a good model generates more questions than it answers.
3' Define carefully the level of description:. even the biggest computers of today (or tomorrow)are Liliputian compared to the processing power oi-a single ceri.

4. Numerical simulations are model based specifl c controlled experiments.
'to be published in Neurar il;;f L";ng and Memory, J, Delacour (Ed.) world scientific, 1992



5. In the long run, each particular problem might need appropriate methods: the results, not
the methods are important.

A weekend easy reading like Edeiman's Topobiotogy (Edelman, 1988) does not exactly enhance
one's confidence in the simplified models we, physicists, garden with affection.

Modeling is thus not more (and not less) than an ed.ucated mathematical formalization of
our knowledge, our assumptions, and our expectations about a system. Modeling teaches
us how to discipline our thoughts and how to organize our knowledge. A good model has a
large data compression rate: it succeeds with a small number of free parÄeters. There is
pedantic but naive approach to science, which takes for granted that one comes closer to reaiity
by improving a model's complexity. Fitting a set of points with more and more parameters will,
of course, reproduce a given data set better and better. It wilt a,tso fail completely in predicting
the behaviour of a similar but slightly different case. Science is the art of flnding the unifying
features lying below the apparent disparity and variety of phenomena seen around us. In this
respect, as Camus rightly saw it, science is dangerously close to art. A scientif,c discovery is -by deflnitio rebellion against the status quo.

One often tends to forget that (scientiflc) progress is based on technology (de Solla price,
1986). Either experimental or theoretical in nature, technology ultimatel.y Ji"la"r what is de-
sirable from what can be done. This is particuiarly true for neurobiology. Contrary to Harvey's
discovery of the blood circulatory system, where the analogy heart $i mechanical pump worked
perfectly well as metaphor and as mathematical model, the analogy brain <+ computer is rather
weak. Nevertheless' we are bound to it in many intricate ways, if only because there is no better
one.

Perhaps the biggest theoretical development in the last years is the wide acceptance of
connectionism, the idea that the brain processes information in a delocalized, parallel, an{
asynchronous way' storing information in the relations (synapses) between the neurons rather
than in the processing units themselves. The advantage of such a collective computation is
evident to somebody trained in statistical physics. Perhaps that explains why ,connectionism'
has its roots in cognitive psychology (Rumelhart and McClelland, 1986) and not in physics.
Being a consequent connectionist, is not easy, however. We keep süding away in the clirection
of Grand-Mother Neurons a,s soon as we take a semantic approach tt 'high levei' neuronal
processing.

Looking from the theorist's side, the basic problem in neurobiology is the strong interaction
between morphology, (electro)physiology, and collective function. Assume that we look at the
vertebrate retina, a supposedly well studied part of the brain. There are discordantiy many mor-
phological types of detectors and neurons, aI1 diferent in size, shape and connectivity patterns.
l{evertheless, it is evident that the retina has a highly regular liyered structure. Measuring
intra-cell activity of single neuronsT one can classify them according to their electric responses
to stimulus form, light intensity, and color. Should morphology correlate with the electrophysio-
iogical data? One would expect so, but the number of distinct electrophysioiogical types is much
less than the number of morphological types. Let us not forget that ihe n.orJn, have also their
- let's say - private life. They have their own metaboLism, they are busy synthesizing differ-
ent proteins needed for producing neurotransmitters, keeping their ion channels navigable and
their structure fit. And what about the logistic system feeding the whole network with energy,
transporting materials where they are needed, and organizing holidays for the tired workers?

The basic probiem is that we do not know what the d.ifferent cel1s are supposed to contribute
to the coilective function of the brain. In vertebrate retina, for example most celis act as
fllters and their röle is more or less evident. Other cells, like the amacrine cells, are more
puzzling. There is evidence for specific morphological ad.aptation of synapses to dark already at
the detector level (Weiler and Wagner, 1984). Feedback from upper ievels in form of dopamine



from interplexiform cells acts on the electrical junctions between horizontal cells, shutting off
the color vision network and enhancing at the same time the white-black sensitivity. Is it the
form of the single cell, or oniy the network structure influenced by the need of such regulation?
In other words: to what extent are the higher functions of the brain regulating ihe morphology
at a lower level?

Saccades, drift-iike eye movements, and visual pursuit play an important röle in the interpre-
tation of visual images. But how is an image reconstructed after the eye muscles have positioned
it on a spatially far away location on the retina? How is this feat done so fast and flawlessly that
we are not even aware of it (Carpenter, 1988; Ditchburn, 1973) ? I flnd this question at least
as puzzling as the nowadays fashionable segmentation and binding problems (Damasio, 19Bg;
von Malsburg aad Schneider, 1986). When the whole structure is set up during development to
what extent are these higher ievel functions influencing the whole neural architecture? How are
the bio-chemico-physical constraints during development (Purves and Lichtman, 1985; Purves,
1988) deflning the biological technology: what can be done and what not? And where and how
is the long time scaLe evolutionary trail ieaving its mark?

In physics, an elementary particle, for example, might contain in its mass part of the in-
teraction fi.elds. This is the case of 'renormaLizable'theories, a'soup'where one can sti1l see

the 'bread' pieces. There are even denser 'soups', where there is no way to separate the bread
crumbs from the soup itseH. Were the brain such a strongly interacting system, what chance do
we stand in understanding it?

It might be that the basic computational units of the nervolls system are very different
from the single neuron cells. Besides and parallel to the already complicated neuronal network,
there is a very intricate additional network of interacting neurotransmitters, receptors, intercell
messengers, and other chemicals, being able to diffuse into the intracellular space and regulate
in an indirect way the actua,l interaction between neurons and their sensitivity (Faber and Korn,
1988; Gatly et al Lgg}). In this respect, neurons and their proliflc networks seem to me Like the
highways, storage rooms, and logistic faciüties of an invisible army.

In fact, the main theme of this article is that the brain can be viewed as a very complex
ecoiogical system and might be modeled in similar ways.

2 The Mosaic-Cycle Concept

The mosaic-cycle concept of ecology was developed in 1938 by Aubreviile (Aubrevil1e, 1g32).
It was revived recently by H. Remmert and D. Mueller-Dombois, several contributions to this
topic have been published recently in a sleek volume (Remmert, 1991). The mosaic-cycle, or
patch-dynamics concept, proposes a dynamic form of organization best exempüfled by temperate
primary forests in Europe and l{orth America (Bormann and Likens, 1979). The mosaic is
formed by different, asynchronously developing patches (stones) of vegetation. Within one
stone, the trees have roughly equai age and belong to similar species. Their lifecycle determines
the basic characteristic frequency of the patches. The strong correlations within one patch are
provided by the so-called dieback phenomenon (lvlueller-Dombois, 1gg1).

As the dominant organisms of the patch are getting older, they become more sensitive to
different forms of environmental stress (sunburn, winds, mineral accumulation, parasites). When
one or more old trees die, the whole patch becomes unstable and dies out. Once a patch becomes
free, a flerce competition between soil vegetation, different bushes, and young trees of clifferent
species follow. In this period of the cycle, the number and the variety of different species reaches
its peek' After some time, the dominant specie(s) trees become tall enough, the other trees
die out and the stone maturates. The 'young titans' are coming from similar species and have
similar age.



Thus, this type of structure requires two basic underlying mechanisms: a characteristic life
cycle, deflned basically by the dominant species, and the dieback effect, which synchronizes from
time to time the individual cycles over large spacial regions (a kind of 1oca1 'reset' command).
Environmental fluctuations ensure that the size and the position of the patches shifts in time,
allowing for a ciose to optimal exploitation of different resources. There is no, or very weak
interaction between the diferent patches.

Roughly, this form of organization corresponds to a set of weakly inhibitorily coupled os-
cillators (young ttees cannot compete with taller, older ones and can develop only on patches
where the old trees died out). The size and the form of these stones might vary from a few tree
fa11-gap (tropical forest) to,many square kilometers (taiga-type forests). Fig. 1 shows a typical
patch structure in a Yugoslavian (?) virgin forest, Fig. 2 explains the basic elements of the
underiying cycle. Similar structures can be observed in many social, political, and economical
systems as well. What about the brain?

Three years ago, W. Singer's research team at the Max Planck Institute für Hirnforschung
discovered by measuring the local fleld potential of assemblies of neurons in the visual cortex of
the cat that typical frequencies of around 40H2. (Gray et al,!989; Gray and Singer, 1989) build
up when stimuli with given global properties are presented to the retina. Later, evidence has
been found that assemblies of neurons coding for speciflc features of a stimulus (the contours of
a moving object, for example) become synchronized not only over a single vertica.l cortex column
but a.iso over different cortex areas with the same receptivefield (Eckhorn et o/, 1988; Gray and
Singer, 1989). The synchronization between different groups of neurons can be directiy forced
by the stimulus, followed by a period of more reguJ.ar, collective osciilations. A very impressive
finding is that when a stimulus was a moving bar, such synchronization in frequency occurred,
while for two bars moving in different directions, it was absent (Eckhorn at al, lgg0).

These experiments have been interpreted as evidence of a linking code,, suitabl.e for the
representation (labeling) of spatially distributed features of an object. Such a procedure, known
in object oriented programming as binding, has been suggested by von Malsburg and Schneider
(von Malsburg and Schneider, 1986).

In other words, the 1oca.l information conveyed by different groups of neurons is linked
into more abstract globai quantities by the common frequency of their synchronous oscillation.
If such a coding indeed exists, it would require some decoding apparatus, some higher level
interpretation of this frequency labeüng, or at least a mechanism using extensiveiy this feature,
Thus, it is not only logical but rather necessary to assume that such a code must be a general
feature of the neuronal code and is not restricted to the cat's visual cortex only. Nlany biologists
are perhaps not willing to go that far, others dismiss it lightly as'artifact'.

When trying the assess the merits of such a bold hypothesis one should consider several as-
pects' One is concerning experimentai details: are the phenomena described here really universal
and not specific for the visual cortex of the cat? Similar effects in the oifactory buJ.b (Freeman
and Skarda, 1985) seems to support the tniversal character of these findings. However, one has
to clarify to what extent are these observations reproducible: do they happen always in similar
situations, or are there some cases when they happen, some cases when not? It is not my task
to evaluate this type of evidence. 0n the theoretical side, assuming that the interpretation is
cortect, one has to answer more general questions: What are the advantages of such a coding?
How complicate becomes to interpret it? How does the system's performance scale up, does it
deliver in principle the required precision at the required speed, is it stable against fluctuations?
Does it allow for a reasonable, fast neuronal computation?

Let me consider the analogy forest (} brain. Assume that the basic cycle of the patches in
the different primary forests of ou brain is defined by the mean activity of the dominant type
of neurons. Rejuvenation is related in this analogy to the arrival of different signais, cornpeting



for attention' Although the eiectrical activity of the patch (assembly of neurons) might not beparticulariy strong, a large variety of different chemico-physical processes run in the baikground.
The incomin$ stimuli compete for the resources of the patch. Some of them become dominant
and suppress all others, the assembly 'maturates'. At this stage the mature neuronal assembly
fires in a rather reguiar way. As the stimulus grows 'older', however, it becomes unstable due to
channel conduction, to the overuse of local energy-material resources or because it is shut off by
the iateral difusion of particular chemical zubstances (Faber and Korn, 1g8B; Gally et at lgg1i.

The mosaic-cycle concept emphasizes the presence of desynchronized, cyclic patches of ac-
tivity at the expense of complicated feedback mechanisms. In ord.er to be a valid. metaphor for
the brain, it requires that the 'dieback' of neuronai-patch activity to be an essential ingredient of
the neuronal regulation' In turn, this assumes the active participation of the whole intracellular
local 'environment'in the neuronal computation process.

In this view, the neurons form basicaily a complicated network of communication channels,
whose capacity, sensitivity, and trafrc is directed by local chemical agents, acting from the in-
tercellular space. For exampie, it has been recently suggested that alas iike NOmight piay a
very important role in long-term potentiation (Gally et at 1990). Such an intercellula, *.rruog.,
could be exported by a postsynaptic neuron in order to increase the amount of reieased transmit-
ter on the presynaptic side (Böhme et a\,1,99L; O'Dell et at, !g9I; Haley et al, TggI; Schuman
and Madison, 1991). Taking into account the fact that at the same synaptic junction many
diferent chemical channels are present, it is not hard to see that including äifferent interacting
loca1 chemicai networks, possibly also latera,l d.iffusion, is necessary if one wants to unclerstand
how and what information is transmitted over the neuronal network. In view of avaiiabie new
immunological methods of identifying speciflc neurotransmitters and neuroreceptors, keeping
track of the mass balance of certa.in key materials might provide a lot of unexpected information
on the low level dynamics of neural networks.

3 A Simple Mosaic Model
In order to proceed with such ambitious projects, I will introduce in this Section a deceptiveiy
simple phenomenological model of a neuron in terms of a probabilistic Turing machine. This
means that instead of concentrating on the details of singie neuron dynamics,I will accept the
main features of such models as they are, leaving open the option of maiing the modei as realistic
as desired in later versions. This type of model can be easiiy structured and, in addition, some of
the problems related to detection, preprocessing, error correcting cod-ing, universal computation
capabilities, communication, memory,learning, and optimal control can be discussed in a general
framework. The goal of this paper is to introduce the main ideas and to present a valid working
hypothesis: more details will be published elsewhere.

From a dynamic point of view we are interested in two main classes of processes:

1' how the membrane potentialof neurons behaves as function of the input voltages, the dis-
tance from the synaptic input, and perhaps the average chemical state of the environment
(single neuron dynamics),

2' how long-term potentiation is induced and preserved (synaptic dynamics).

Very good reviews for neuronal cable equations (non spiking neurons and electrical synapses)(Rail, 1989), compartmenta.i models (Segev er a/, igao), or simplifled variants of the Hodgkin
and Huxley model (integrate and flre models) (Abbott and Kepier, 1gg1) are readiiy available.

The general form of the dynamic equations of any neuron has the torm lHoagkin and Huxley,
re52)



cY = -Ii"^(t) * I;,P(t) * nav (1)-dt
where C is the cell capacitance,, I;on(V,W{t),...,W*(t)) the membrane current and {,0(f) the
sum of external and synaptic currents entering the cel1, measured over unit membrane area.
The membrane current l;on is the net effect of the conductance over different type of channels
(I,[ describes the open fraction of itä channel type) between the interior of the cell and its
environment. Space dependent inhomogeneity can be accounted for by the Lapiace operator.
IJsirally, ion diffusion through the different channels result on a highly nonlinear function of the
membrane potential as a function of the potentiai tr/ and time. A typicai spike produced by a
long enough positive external current l looks roughly as in Fig. 3. What is important is that if
the capacitively time-integrated input signal overcomes some threshold value, then the neuron
is depolarized and flres. Equally important is that shortly after flring the action potential is
hyperpolarized and a given refractory period is needed before the membrane potential relaxes
to the resting state. Mathematically, one has to deal with a set of more than three nonlinear
differentia,l equations. As expected, the whole menagery of period doubling Hopf bifurcations,
intermittence, chaos, etc. shows up. Analyzing this complex dynamics is a profession in itself
(Degn et al, 1987). My problem with this type of approach is that it produces fine-tunned
parametric effects, many of them unstable against thermal or other external fluctuations. It is
also not clear to what extent are these features actually used in neuronal computation.

Let us look again at Fig. 3. One could simply take a phenomenological approach and model
this type of behaviour with a frnite state machine. Let us choose some typical values of the input
current and define probabilistic rules describing the different types of expected behaviour as a
function of the input current. For example, assume that one allows only two different possible
input values for the external current Iinp = 0,1. Likewise, the membrane potential might take
only on four states V = Q,f ,r,h defining the type of membrane excitation as quiescent, fi.ring
(or depolarized), rehyperpolarizing (or relaxing), and hyperpoiarized. These four states are
indicated in Fig. 3 by arrows on the I axis. Obviousiy, one could increase the number of states
to the extent we feel necessary. Assume that every r time interval a new I;n, is entered in our
probabilistic automaton. The effect of capacitive integration can be modeled by allowing the
automaton to respond, say to the last 5 input values. We assume thus that the next state of
the automaton will depend on the last five input -I;r,o signals and on its previous state:

V (t + I) = f ( S (t), I;"oQ),V (t))

where 
k=5

5(r; = Ll,?lr(t - k)r* (3)
A=0

{u6} being some fixed set of weights. In the simplest case we could compare 5(f) with some
threshold value and decide whether the total input is iarge enough to produce a spike. Denoting
this binary variable with o(/) = 0,1, we can define a probabilistic table with the eLements

Pr,j =p(v(t +1)lo(t),v(t)), i = {1,2,3,4}, J = {0,1}{1,2,3,4} (4)

where P,,, is one element of the transition matrix P. Assume for example, that the system is
in the state V(t) - q. Thus, unless o(t) = I, V(t+ 1) = q. I', o(t) = 1, then V(t + I) = f,
Not ail rules have to be deterministic. For example, we could introduce a time-delay by deflning
a probability smaller than one for the transition o = I,V(t) = q --+ V(t + 1) = g. Similarly,
we could prolong at will the average time needed for the signal to relax from state r to state
h and back to state q. In the present discretization, the transition matrix has 4 x 8 elements.

(2)



These parameters are easily fltted to the real measurements and do not contain any further
hidden assumption about the dynamics of the system. Once the transition matrix is defined,
the dynamics of the system is described by the usual master equation

u(i,t 1 t) = I P;,y,a(V,t)E(t)
v

where u(i,t) is the probability that at the time t the membrane potential is i and E(t) denotes
the probabiiity that in the last fi.ve time steps the input current was in average larger than a

given threshold.
The current leaking through the different ion channels can be easily incorporated in this type

of model. Even better, the effects of different kinds of neurotransmitters and neuroreceptors are

easily modeled within this framework. Similarly, we could place this 'neuron' into a given
environment, connect it to other neurons, model its local environment and adaptive changes
resuiting from different kind of chemical and/or eLectrical interactions.

It is perhaps worthwhile to stress again that this type of model is purely phenomenological:
it assumes one already knows or one is abie to measure the typical behavior of a given neuron
under different environmentaL conditions. Note that I am not erplaining the time dependent
behavior starting from some higher principles (Ohm law, Laplace equation for ion diffusion,
nonlinear dynamical efects, etc.) but I take the experimentai information for granted and I
modei it in the simplest possible form. If later it turns out that some speciflc feature of the
model is critical in determining the collective properties of the network, one must go back and
develop a more detailed description of the underiying mechanisms.

Since we are interested in the collective properties of whole networks, this type of approach
has many advantages. First, the behavior of a single computational unit is easily compared
(perhaps even fitted) to electrophysiological data. Second, once the transition matrix is set, the
neuron is very effectively simulated on a computer, allowing for large scale simulations. Third,
the probabilistic approach allows one to work in a model where fluctuations are automatically
included and controlled. Fourth, there is only a question of data availabiüty and patience to
incorporate different types of units connected in a more or less reaüstic way. In fact, together
with J. Ammermüller and W. Möckel, we are presently setting up such a stochastic model for
the outer plexiform part of the carp retina. It is rather amazing how difrcult is to gather and
fit together the needed data, even for such a well known system.

3.1 A Two-Dimensional Model

For the sake of simplicity, let us assume only one time step memory, as well as a square lattice
structure of the neurons, each interacting (both ways) only with its neighbors.

The dieback is modelled as an extracellular interaction between spatially neighboring neu-
rons. The basic hypothesis assumes that in the membrane activation cycie there is a state
regulated by local mean potentials. For example, we could postuiate the accumulation of some
laterally diffusing intercellular messenger shortens the refractory period if some neighboring cells
are already in the rest state. Thus, a neuron is 'encouraged' to move from state ä to state q,

once some of the neighbors have already done so.

We represent such a dynamics in the form of a probabilistic Turing machine, summarized in
the the Table shown below. ln the original formulation the variable o is 'read' from some tape.
Here a is a environment binary va,riable summing up the effect due to interactions with other
neurons. The internal cycle of a neuron is represented by the four internal states introduced
above. In output, the neuron sends a a/ binary output variable to its postsynaptic partners.

(5)
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Here o(t) = O(D,,,, o(t - L)+ Iap(t) - 0(t)).The exciration variable o = {0,1} codes for the
activation state of the neuron, O(r) = 1 if r )= 0 and 0 otherwise, the sum runs over all
output o values of afferent neurons, d is a (possibly time dependent) threshold. s is the internal
state with the four possible values Q,f ,r,h. p;, i = 7,...,4 is the probability that state i will
change over the next one. pe is the quiescent fire rate. The overail variable E takes into account
the dieback effect: the value of switching from state ä to state g is influenced (via interceilular
messengers!) by how many neurons in its immediate physical oeighborhood are already in state
ib. Note that this effect does NOT require a synaptic connection between the neurons.

Thus our model functions like a ciock and has a definite time direction. After the system
is wired up (synapses in both directions are set up), it is initialized at random, and a stimulus
sequence is prepared. The stimulus is entered in a predefined way on specifled areas of the
network at predefined time steps. In the simulation described below, only nearest neighbor
connections were allowed between neurons and pa was increased by a given amount when one
or more of the four neighbors was in state ä.

A simulation cycle has two basic steps:

1' The input a variabie is caiculated from the actuai system state and the actual external
stimulus input. The global E variable denotes how many spatially nearest neighbors are
in state ä.

2. The new internal states and the output state o/ are calculated using Table I.

The flring pattern of a neuron is influenced thus not only by the weighed sum of the input
current coming from different afferent synapses but also by a local fie1d building up in the in-
tercellular space between spacially neighboring cells. ln the absence of any- stimulus, simiiarly
to what happens in a forest simuiation (Wissel, 1991), one sees distant, desynchronized patches
which just happen to have roughly the same age (excitation state). The amount and the cor-
relation between the random firing in the quiescent state (no external inputs) can be regulated
by tunning appropriately the threshold. Snapshots of the activity patterns reveal a structure
similar to Ising clusters above the critical temperature. The patterns are not strongly correiated
and patches of relatively smal1 size are evenly d-istributed in the system.

Applying an external input on one or two columns of the system has drastic consequences:
a strongly oscillating signal takes over the whole lattice (large patch), as the system were driven
suddenly well below the critical temperature. In a relativeiy small number of iteration steps,
while keeping constant the external input, the picture changes from a single patch dynamics to
a rather intertwined, dynamically changing net of fllaments. Thus, the system desynchronizes
(mixes) rapidly, in spite of a high average firing rate. After removing the external signal the
system relaxes back to the kind of small, independent patch dynamics discussed above.



In summary, the picture emerging from this simulation can be interpreted as foilowing: an
unstimulated neuron layer forms small, uncorrelated patches of spontaneous activity. The ac-
tivity level is easily regulated by chemicals acting on the average threshold. When a certain
amount of externa,l stimuli enters the system, a short period of strong, synchronized activity
follows. Keeping the stimulus on wiLl maintain the high level of activity but not the synchro-
nization. As the input impulse is disconnected, the system relaxes back to the spontaneous
activity level. In the simulation we see thus an amplification of the input signal coupled to a
strong but temporary frequency locking.

In order to function as vehicles for segmentation and feature binding, neuron oscillators must
be abie to synchronize and desynchronize their activity rather rapidly. Recently, a large number
of papers have been published on the synchronization properties of coupled oscillators (Golomb
etal ,l99ri Hil, 1991; Schusterandwagner, 1990; Sompoiinski etal,rgg}a; Sompolinskietal,
1990b; Winfree, 1967). There are severalprobiems with the synchronization of noisy osciilators.
I/sually, the phase locking is mediated by long-range (mostly excitatory) connections. While
phase locking happens rather fast, desynchronization is much too slow. Recently, it has been
suggested that using nonlinear neurons in their chaotic phase wili speed up desynchronization
(Hansel and Sompolinski, 1992). Another problem is reiated to the fact that due to the neuron-
neuron couplings a phase delay must occur, a fact not seen experimentally.

A simple explanation of several puzzling facts found in synchronization of several distant
patches of neurons might be related to the mosaic-cycle picture. The synchronization of different
patches in distant cortical areas might simply reflect the fact that cycles characteristic for neuron-
ciocks were initiated at the same time. This is mostly evident, as expected, when one averages
over local populations of neurons. It also gives a simple explanation for the zero phase lag
synchronization measured in remote corticai columns with similar receptive fi.elds (Gray and
Singer, 1989).

4 Some Computational Properties

Usually, forma,l modeis of neurons (especially McCullogh-Pitts binary neurons), implement
easily any logicai function. However, cellular automata like models, similarly to the neuron
model introduced above, are not automatically able of universal computation. In order to
show that this is indeed the case, one either has to map the automaton on a known model
with universal computation capability, or one has to show that using a particular coding, the
dynamics of the network will impiement in special cases a complete set of boolean functions,
like say the functions NOR, OR, and AND,

The model introduced above was a kind of (probabilistic) clock, which under stimulating
circumstances will go around its state cycle. If one connects such neurons in a linear chain
and one assumes for the sake of simplicity that each neuron has four internal states, und.er
appropriate condition they satisfy the so called next-state majority rule (Goles and lvlartinez,
1989). Since in this model the variables form a linear lattice, each has two neighbors. The
variables are updated synchronously, and switch to the next state (mod a) only if at ieast one of
the neighbors is in that state. Otherwise, it remains in the old state. This type of interaction is
expected also within the stones (patches) of the system, where the activity of neurons is highly
correlated.

Already, this one-dimensional model has several interesting properties (Goles and Martinez,
1989). First, it decreases locally the value of the Potts Hamiltonian,

H;=-5-d,,- L-/ 'tt'Jj
(6)



where j is anearest neighbor of.i.,l;, lj = A,1,2,3 are4-state Potts variables and d the Kronecker-
deita, which is a natura,l measure of the degree of local synchronization between variables. In
fact' it seems very appealing to assume that the behavior of a neuron is controlled by its tendency
to minimize some local cost (energy) function, to which the long-range interneuron interactions
contribute only on an indirect way, via the release and take-up of neurotransmitters. Secondly,
the model is able of universal compuiation. This can be seen by showing that the model can
implement a complete set of boolean functions (NOR, OR, AND). It also contains so-ca.lled
giiders, finite configurations moving in the celluiar automaton space. Gliders can be used to
code binary variables. Together with the logical gates, they provide the possibility of simulating
any boolean function in the one dimensional celluiar automata space.

One of the most appealing aspects of neura,l network models is the fact that information is
represented in the form of certain firing patterns of a whole assembly of neurons, and is stored
in appropriate synaptic connections. The process of learning is thus related to the dynamics of
synaptic strengths. Exactiy how long-term potentiation is induced is still under debate. There is
some evidence that the synaptic changes are induced by a special network of neurons. Even so, it
seems hard to believe that synaptic connections can remain so accurately tunned for years. The
very existence of iong term memory impües the existence of an extremeiy accurate regulatory
system. This suggests that along with electrophysiological measurements it is highly desirable
to follow also the transport of different neurotransmitters and interceilular messengers.

Although the main communication pathways in the brain are more or Less hardwired, it is
difficult to imagine that the information gathered from different sensory channels is synthesized
into one single coherent percept without allowing for a very flexible iatertwinning of the different
paths. Thus, although many paths are possibie, every signal seems 'to know'in what specif.c
direction it has to go. I imagine this process as somebody climbing upstream a mountain river,
jumping from stone to stone. Similariy, an input signai might use the active patches of a given
layer in order to move in a given direction. This type of 'content dependent' communication
must be an important feature of the brain. If this ls the case, then how to make sure that the
messages are not corrupted during communication?

In the two dimensional model discussed above external signals lead to an ampliflcation of the
average fire rate together with a temporary synchronization of the signal over a reiatively large
area. One possible interpretation of this dynamic behavior is related to error free communication
' Error correcting coding is a procedure of introducing redundance in the signal such that after
transmission through a noisy channel, the original signal (or the information it contains) can
be reconstructed with high accruacy. One simple example is sending over a binary channel
a bitstring consisting of 0's and 1's. During transmission, the bits are flipped with a smail
probability, p. One simpie way of improving retrieval is to send each bit three times, for example.
In arrival, one takes as valid only the majority of the three variabies (McEliece,ISTT). Looking
from this perspective, short time oscillatory synchronization might be a simple way to repeat
the same message several time. The integrate and f.re process of the receiving neuron shows
indeed simüarity to a majority rule decoding. Since some axons form rather long (and thus
noisy) communication channels, such a simple strategy might be very useful for error correcting
coding.

There are, of course, more effi.cient ways of error correcting coding which use statistical
mechanica'l methods (Sourlas, 1991)). Such algorithms for visual (Poggio, L990) and speech
recognition tasks (Derouault, 1987).



5 Perception as Optimal Queries
Another basic principle seen in every biologicai system is control and correct By this I mean
that from the moiecular level up to the highest perception levels, the constant dialog with
environment triggers adaptation and correction processes, In visual perception, for example,
we are constantly inquiring our environment with flnely tunned eye movements. Similarly, our
cochleaisemittingsoundatthefrequenciesmostusedbyourauditoryapparatus (.Z:urck,1g8b).
Thus, perception is not a static process, as sometimes naively assumed, but more like to an ask
and answer game with our environment.

It is worthwhile perhaps to close this article with a simpie example showing how the gener-
alization abilities (the prediction power) of a single neuron can be improved. by allowing it to
formulate questions such that the environment's answer has a maximal degree of information.
This type of game has been worked out by W. Kinzel and myself for the simpie case of a single
formal neuron (a Perceptron) (Kinzel and Rujän, 1990). ln our model we had one neuron using
Hebbian learning rules with no memory of the past examples except for its weight vector (actual
synaptic strengths). After giving ourselves a few examples generated from a target linear sep-
arable function, we allowed the neuron to formulate questions on whose outcome he was most
insecure. Giving the right answer to these questions, the Perceptron in question was able to
learn much faster the target function than in experiments where the Perceptron was allowed to
learn only ra,ndomly generated examples. This is shown in Fig. 4.

This type of reasoning may be applied to more complex networks as well: by measuring the
'questions'of the network can we guess something about its structure? This comes close enough
to what psychology is supposed to do. Assuming that our motoric control is optimized, can we
use our mathematica,l models to infer some specific neurona,l. structure of the motoric centers?
Some impressive implementations of robot insects (Beer, 1990) seem to support this view.

6 Instead of Conclusions

I think it is rather clear that the type of approach suggested in this article suffers from the
same weaknesses as its more complicated predecessors: although hopefully retaining some of
the biological properties of the real neuronsT it does not provide an automatic answer to the
following questions:

1. Given an input signal, how are the characteristic features of this signai computed and
coded by a network of 'neuronal' units?

2. What should be considered as a meaningful 'pattern': a given firing pattern of the neuron
assembly at a given time or perhaps some more sophisticated space and time dependent
(average) firing frequency conflguration?

3. How are the correiations of such a pattern stored so that the pattern can be retrieved later
by an appropriate input signal? What are the possible biological mechanisms behind such
long term memory? Can such a mechanism store ten of thousands of pictures (Standing,
1e73)?

4' How is an external stimulus transm.itted to the desired brain region(s) and what kind of
error correcting code is used in order to avoid noise induced failures?

5. Is there a specialized 'teacher'neuronal network controlling learning ? What are the basic
iearning algorithms used by the brain?



6. What kind of time - and space - labelling scheme is used in order to synchronize infor-
mation arriving from different input channels?

7. If one considers the brain as having long range neuronal networks coupled to local chemical
interactions: which is doing what?

There are many partial and tentative answers to these questions but there is fair to say that we
do not know.

The compiexity of biological structures is in many ways depressing for the theoretically
minded. The road to a biologically acceptabie model seems rather long (and winding). The
data and knowledge gathered with patience by biologists is not yet enough to provide sharp
clues where and what to look for. Shouid then we give up the quest of understanding how
we learn, temembet, and think? Should one decide that the world in general and the brain in
particular defies any logical (rational) explanation, as many people believe? Is there a criticai
level of complexity above which, even in principle, no possible mathematicai description exists
and thus, no theoretical prediction can be made? Is life and our ability to look at it only a
single, particular accident in the Earth's, or perhaps even in lJniverse's history?

My answer is NO. The most unbelievable aspect of üving beings IS their predictability, the
unparalleled ingenuity of Nature to reuse the SAME basic structures in so many different forms.
The stability of complex organisms and ecological systems defles that of their mathematical
models. In many ways, a fish or an ant is a far more accurate mechanism than any atomic
clock. It is this type of strong determinism, so evident during deveiopment, which indicates that
the living world HAS generic functional principies. These are the Mount Everests of the next
generations.
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Figure 2: Schematic representation of the forest cycle (afier Remmert, 1991).
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Figure 3: A typical action potential spike as a function of time. The arrows denote the four
different states used in our model.
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Figure 4: Generalization probability of a flebb-trained Perceptron. a is the ratio between the

number of presented, eramples per number of input units, the lower curue is the result obtained

from passiue learning, while the upper curae is the result obtained when the Perceptron is allowed
to ask questions with a marimal information content.
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